One reason why you can think about using a custom state store is the performance issues, or rather unpredictable execution time due to the shared memory between the default state store implementation and Apache Spark task execution. To overcome that, you can try to switch the state store implementation to an off-heap-based one, like RocksDB.
Since there are already 2 Open Source implementations for RocksDB state store, I decided to use another backend to illustrate how to customize the state store in Structured Streaming. Initially, I wanted to try with Badger which is the store behind DGraph database but didn't find any Java-facing interface and dealing with the Java Native Interface or any other wrapper, was not an option. Fortunately, I ended up by finding MapDB, a Kotlin-based - hence a Java-facing interface - embedded database.