Date functions in Apache Spark SQL

Versions: Apache Spark 2.4.2

This new post about Apache Spark SQL will give some hands-on use cases of date functions.

A virtual conference at the intersection of Data and AI. This is not a conference for the hype. Its real users talking about real experiences.
- 40+ speakers with the likes of Hannes from Duck DB, Sol Rashidi, Joe Reis, Sadie St. Lawrence, Ryan Wolf from nvidia, Rebecca from lidl
- 12th September 2024
- Three simultaneous tracks
- Panels, Lighting Talks, Keynotes, Booth crawls, Roundtables and Entertainment.
- Topics include (ingestion, finops for data, data for inference (feature platforms), data for ML observability
- 100% virtual and 100% free

👉 Register here

The post is divided into multiple short sections. Each of them shows the use of one specific datetime function.

add_months

The first method adds months to a date time-like (date, timestamp, string) column. The nice thing here and in other methods, by the way, is that Apache Spark handles automatically the conversion of the string to corresponding datetime (I will write about it soon). So you don't need to convert it manually:

  "add_months" should "add 2 months to the date column" in {
    val dataset = Seq(("2019-09-20"), ("2019-01-20"), ("2019-13-01")).toDF("datetime_col")

    val result = dataset.select(functions.add_months($"datetime_col", 2).as("date_with_2_months").cast("string"))
      .map(row => row.getAs[String]("date_with_2_months")).collect()

    result should have size 3
    result should contain allOf("2019-11-20", "2019-03-20", null)
    dataset.select(functions.add_months($"datetime_col", 2).as("date_with_2_months")).printSchema()
  }

current_date

current_date() returns a DateType columns with the...current date:

  "current_date" should "return current date" in {
    val now = LocalDate.now().format(DateTimeFormatter.ISO_LOCAL_DATE)
    val dataset = Seq(("2019-09-20"), ("2019-01-20")).toDF("datetime_col")

    val result = dataset.select(functions.current_date().as("current_date").cast("string"))
      .map(row => row.getAs[String]("current_date")).collect()

    result should have size 2
    result should contain only (now)
    dataset.select(functions.current_date().as("current_date")).printSchema()
  }

current_timestamp

Similarly to the previous method, current_timestamp() computes a TimestampType column corresponding to the current timestamp.

  "current_timestamp" should "return current timestamp" in {
    val now = LocalDateTime.now().format(DateTimeFormatter.ISO_LOCAL_DATE_TIME).dropRight(8).replace("T", " ")
    val dataset = Seq(("2019-09-20"), ("2019-01-20")).toDF("datetime_col")

    val result = dataset.select(functions.current_timestamp().as("current_timestamp").cast("string"))
      .map(row => row.getAs[String]("current_timestamp").dropRight(8)).collect()

    result should have size 2
    result should contain only (now)
  }

It's important to notice that the returned value is the same for all rows and it corresponds to the timestamp at the start of query evaluation:

  "current_timestamp" should "return the same timestamp for all rows" in {
    val result = (0 to 1000).toDF("x").select(functions.current_timestamp().as("current_timestamp"))
      .map(row => row.getAs[Timestamp]("current_timestamp").getTime).collect.toSet

    result should have size 1
  }

date_add

The next method, date_add(start: Column, days: Int) adds days to the column's value and returns a new date. Since the returned type is a date, the time is ignored, even if it was present in the input data:

  "date_add" should "add different number of days to a date" in {
    val dataset = Seq(("2019-09-20"), ("2019-01-20")).toDF("datetime_col")

    val result = dataset.select(functions.date_add($"datetime_col", 45).as("date_in_45_days").cast("string"))
      .map(row => row.getAs[String]("date_in_45_days")).collect()

    result should have size 2
    result should contain allOf("2019-11-04", "2019-03-06")
  }

date_format

If you want to apply a specific format to your input date, you can use date_format(dateExpr: Column, format: String). As you can see in the test case, it applies on dates as well on date time values:

  "date_format" should "reformat date into a custom format" in {
    val dataset = Seq(("2019-09-20"), ("2019-01-20T20:00")).toDF("datetime_col")

    val result = dataset.select(functions.date_format($"datetime_col", "dd-MM-yyyy 'at' HH").as("formatted_date").cast("string"))
      .map(row => row.getAs[String]("formatted_date")).collect()

    result should have size 2
    result should contain allOf("20-09-2019 at 00", "20-01-2019 at 20")
  }

date_sub

It's the opposite of date_add. date_sub(start: Column, days: Int) substracts days from the date:

  "date_sub" should "substract 45 days from the input date" in {
    val dataset = Seq(("2019-09-20"), ("2019-01-20")).toDF("datetime_col")

    val result = dataset.select(functions.date_sub($"datetime_col", 45).as("date_45_days_ago").cast("string"))
      .map(row => row.getAs[String]("date_45_days_ago")).collect()

    result should have size 2
    result should contain allOf("2019-08-06", "2018-12-06")
  }

date_trunc

If you looked at the signature of the previous methods, you can see that the column is always in the first place. It's not the case for date_trunc(format: String, timestamp: Column) which lets you to truncate the datetime into the first day, month, year, hour, minute, second, week, month and even quarter:

  "date_trunc" should "truncate timestamp to the first hour of the day" in {
    val dataset = Seq(
      ("2019-09-20T00:30"),
      ("2011-10-20T07:50"),
      ("2020-02-29")
    ).toDF("datetime_col")

    val result = dataset.select(functions.date_trunc("hour", $"datetime_col" ).as("truncated_datetime").cast("string"))
      .map(row => row.getAs[String]("truncated_datetime")).collect()

    result should have size 3
    result should contain allOf("2019-09-20 00:00:00", "2011-10-20 07:00:00", "2020-02-29 00:00:00")
  }

datediff

If you want to compute a difference between 2 dates, you can use built-in datediff(end: Column, start: Column) function. It can generate different results though. If the first column's value happens earlier, the result will be positive. If not, the outcome will be negative. And since the difference is expressed in the number of days, the result can also be 0 if you compare the dates of the same day:

  "datediff" should "compute difference between 2 dates" in {
    val dataset = Seq(
      ("2019-09-20T00:00", "2019-09-20T23:00"), // same day; will be 0 since not rounded
      ("2019-01-20T10:00", "2019-09-24T20:00"), // the 2nd col greater
      ("2019-09-20T20:00", "2019-01-20T03:00") // the 1st col greater
    ).toDF("datetime_col1", "datetime_col2")

    val result = dataset.select(functions.datediff($"datetime_col1", $"datetime_col2").as("diff"))
      .map(row => row.getAs[Integer]("diff")).collect()

    result should have size 3
    result should contain allOf(0, -247, 243)
  }

dayofmonth

If you want to know the day of month for a particular date, you can use dayofmonth(e: Column) function. It will return the numerical representation of the day or null if the input date cannot be converted to a date:

  "dayofmonth" should "extract day of month" in {
    val dataset = Seq(("2019-09-20"),
      ("2020-02-29"), // leap day
      ("2020-02-30") // doesn't exist
    ).toDF("datetime_col")

    val result = dataset.select(functions.dayofmonth($"datetime_col").as("date_dayofmonth").cast("string"))
      .map(row => row.getAs[String]("date_dayofmonth")).collect()

    result should have size 3
    result should contain allOf("20", "29", null) // null because 30/02/2020 doesn't exist
  }

dayofweek

Another function to discover day's position is dayofweek(e: Column) which returns the number of day of a week. An important thing to notice here, the numbers start from Sunday (1) and end with Saturday (7):

  "dayofweek" should "extract day of week" in {
    val dataset = Seq(
      ("2019-09-20"),
      ("2019-09-15"), // Sunday
      ("2019-09-16") // Monday
    ).toDF("datetime_col")

    val result = dataset.select(functions.dayofweek($"datetime_col").as("date_dayofweek").cast("string"))
      .map(row => row.getAs[String]("date_dayofweek")).collect()

    result should have size 3
    result should contain allOf("6", "1", "2")

  }

dayofyear

The last from dayof* functions returns the number of a day within a year and it handles leap years correctly:

  "dayofyear" should "extract day of year" in {
    val dataset = Seq(("2019-09-20"),
      ("2020-02-29"), // leap day
      ("2020-02-30") // doesn't exist
    ).toDF("datetime_col")

    val result = dataset.select(functions.dayofyear($"datetime_col").as("date_dayofyear").cast("string"))
      .map(row => row.getAs[String]("date_dayofyear")).collect()

    result should have size 3
    result should contain allOf("263", "60", null) // null because 30/02/2020 doesn't exist
  }

from_unixtime

If you have a numeric value in your column and you want to apply datetime functions on it, you may need to convert it to a datetime format first. The from_unixtime(ut: Column) will help you to do that. It takes a number of seconds from unix epoch as parameter and converts it into a timestamp:

  "from_unixtime" should "convert unix seconds to a datetime" in {
    val dataset = Seq(
      (0),
      (10)
    ).toDF("datetime_col")

    val result = dataset.select(functions.from_unixtime($"datetime_col")
      .as("string_datetime").cast("string"))
      .map(row => row.getAs[String]("string_datetime")).collect()

    result should have size 2
    result should contain allOf("1970-01-01 01:00:00", "1970-01-01 01:00:10")
  }

from_utc_timestamp

This is another conversion method. The from_utc_timestamp(ts: Column, tz: String) takes the datetime specified in the first parameter and converts it into the timezone defined in the second parameter. The input datetime is considered as a UTC datetime:

  "from_utc_timestamp" should "convert datetime to Europe/Paris timezone" in {
    val dataset = Seq(
      ("2018-11-10T20:30"),
      ("2019-09-20T00:30")
    ).toDF("datetime_col")

    val result = dataset.select(functions.from_utc_timestamp($"datetime_col", "Europe/Paris")
      .as("paris_datetime").cast("string"))
      .map(row => row.getAs[String]("paris_datetime")).collect()

    result should have size 2
    result should contain allOf("2018-11-10 21:30:00", "2019-09-20 02:30:00")
  }

hour

The hour(e: Column) function extracts the hour from the input column. The returned value is an integer for 24 hours clock version. If the input date doesn't have the specified time, the function considers it as a midnight:

  "hour" should "extract hour from datetime" in {
    val dataset = Seq(
      ("2019-09-20T00:00"),
      ("2019-01-20T07:00"),
      ("2019-09-20T20:00"), // will return PM/AM or 24-clock version?,
      ("2019-01-20") // what will be default for this?
    ).toDF("datetime_col")

    val result = dataset.select(functions.hour($"datetime_col").as("hour"))
      .map(row => row.getAs[Integer]("hour")).collect()

    result should have size 4
    result should contain allOf(0, 7, 20)
  }

last_day

When you want to get the last day for the month of a specific date, you can use last_day(e: Column) function:

  "last_day" should "return the last day of the month" in {
    val dataset = Seq(
      ("2019-09-20T00:30"),
      ("2019-02-20T07:50"),
      ("2020-02-20") // leap year
    ).toDF("datetime_col")

    val result = dataset.select(functions.last_day($"datetime_col").as("last_day_of_month").cast("string"))
      .map(row => row.getAs[String]("last_day_of_month")).collect()

    result should have size 3
    result should contain allOf("2019-09-30", "2019-02-28", "2020-02-29")
  }

minute

The minute(e: Column) is another method to extract a particular unit from the input datetime. As the name indicates, it gets the minute:

  "minute" should "extract minute from the datetime" in {
    val dataset = Seq(
      ("2019-09-20T00:30"),
      ("2019-01-20T07:50"),
      ("2019-01-20")
    ).toDF("datetime_col")

    val result = dataset.select(functions.minute($"datetime_col").as("minute"))
      .map(row => row.getAs[Integer]("minute")).collect()

    result should have size 3
    result should contain allOf(30, 50, 0)
  }

month

This next function, month(e: Column), extracts the month from the specified date:

  "month" should "extract month from the input dates" in {
    val dataset = Seq(("2019-09-20"), ("2013-01-20")).toDF("datetime_col")

    val result = dataset.select(functions.month($"datetime_col").as("date_month").cast("string"))
      .map(row => row.getAs[String]("date_month")).collect()

    result should have size 2
    result should contain allOf("1", "9")
  }

months_between

The months_between(end: Column, start: Column) calculates the difference between the 2 dates assuming 31 days per month. The returned value is a double. If it's a whole number, it means that both dates have the same day. Otherwise, the difference is computed on 31 days. So for instance, for 2 dates being of the same month and the difference is 15, the returned value will be 15/31. That's the simplified version of the formula. If you want some more details, you can check org.apache.spark.sql.catalyst.util.DateTimeUtils#monthsBetween:

  "months_between" should "return difference between 2 dates" in {
    val dataset = Seq(
      ("2019-09-20T00:00", "2019-09-20T23:00"), // same day; will be 0 since not rounded
      ("2019-09-20T00:00", "2019-09-21T23:00"), // same month
      ("2019-01-20T10:00", "2019-09-24T20:00"), // the 2nd col greater
      ("2019-09-20T20:00", "2019-01-20T03:00"), // the 1st col greater; same day of month
      ("2019-09-16", "2019-09-01") // 15 days of difference, so 15/31 ~ 0.5 months of difference (0.48387097 exactly)
    ).toDF("datetime_col1", "datetime_col2")

    val result = dataset.select(functions.months_between($"datetime_col1", $"datetime_col2").as("diff"))
      .map(row => row.getAs[Double]("diff")).collect()

    result should have size 5
    result should contain allOf(0.0, -0.06317204, -8.14247312, 8.0, 0.48387097)
  }

next_day

The next_day(date: Column, dayOfWeek: String) function returns the first day of week after the date. For instance, you can ask the function to give you the next Monday that way:

  "next_day" should "return next Monday for the date" in {
    val dataset = Seq(
      ("2019-09-20T00:30"),
      ("2019-02-20T07:50"),
      ("2019-01-20")
    ).toDF("datetime_col")

    val result = dataset.select(functions.next_day($"datetime_col", "Mon").as("next_monday").cast("string"))
      .map(row => row.getAs[String]("next_monday")).collect()

    result should have size 3
    result should contain allOf("2019-09-23", "2019-02-25", "2019-01-21")
  }

quarter

quarter(e: Column) figures out the quarter for the specified date:

  "quarter" should "extract quarter from the date" in {
    val dataset = Seq(("2019-09-20"), ("2013-01-20")).toDF("datetime_col")

    val result = dataset.select(functions.quarter($"datetime_col").as("date_quarter").cast("string"))
      .map(row => row.getAs[String]("date_quarter")).collect()

    result should have size 2
    result should contain allOf("1", "3")
  }

second

Another extraction method, second(e: Column), extracts the second from the datetime:

  "second" should "extract seconds from the datetime" in {
    val dataset = Seq(
      ("2019-09-20T00:30:30"),
      ("2019-01-20T07:50:02"),
      ("2019-01-20")
    ).toDF("datetime_col")

    val result = dataset.select(functions.second($"datetime_col").as("second"))
      .map(row => row.getAs[Integer]("second")).collect()

    result should have size 3
    result should contain allOf(30, 2, 0)
  }

to_date

If you need to convert a datetime field into a date you can use to_date(e: Column, fmt: String). It exists also a version without the format parameter. The format applies on the input column:

  "to_date" should "convert a string field into a date" in {
    val dataset = Seq(
      ("2018-11-10 20:30"),
      ("2019-09-20 00:30")
    ).toDF("datetime_col")

    // also exists a to_date(col) without the format 
    val result = dataset.select(functions.to_date($"datetime_col", "yyyy-MM-dd HH:mm")
      .as("date"))

    result.schema.toString shouldEqual "StructType(StructField(date,DateType,true))"
    val stringDates = result.select($"date".cast("string")).map(row => row.getAs[String]("date")).collect()
    stringDates should have size 2
    stringDates should contain allOf("2018-11-10", "2019-09-20")
  }

to_timestamp

to_timestamp(s: Column, fmt: String) is similar to to_date unless it generates the timestamp column:

  "to_timestamp" should "convert a string into timestamp type" in {
    val dataset = Seq(
      ("2018-11-10 20:30"),
      ("2019-09-20 00:30")
    ).toDF("datetime_col")

    // also exists a to_timestamp(col) without the format
    val result = dataset.select(functions.to_timestamp($"datetime_col", "yyyy-MM-dd HH:mm")
      .as("timestamp"))

    result.schema.toString shouldEqual "StructType(StructField(timestamp,TimestampType,true))"
    val stringDates = result.select($"timestamp".cast("string")).map(row => row.getAs[String]("timestamp")).collect()
    stringDates should have size 2
    stringDates should contain allOf("2018-11-10 20:30:00", "2019-09-20 00:30:00")
  }

to_utc_timestamp

to_utc_timestamp(ts: Column, tz: String) converts the datetime of a specific timezone into a UTC timestamp:

  "to_utc_timestamp" should "convert Europe/Paris datetime into UTC format" in {
    val dataset = Seq(
      ("2018-11-10T20:30"),
      ("2019-09-20T00:30")
    ).toDF("datetime_col")

    val result = dataset.select(functions.to_utc_timestamp($"datetime_col", "Europe/Paris")
      .as("utc_datetime").cast("string"))
      .map(row => row.getAs[String]("utc_datetime")).collect()

    result should have size 2
    result should contain allOf("2018-11-10 19:30:00", "2019-09-19 22:30:00")
  }

trunc

If you want to retrieve only some specific part of the date, like year or month, you can use trunc(date: Column, format: String). It can return a truncated year or month. Truncate means here that either the date is truncated to the January 1st (year case) or to the 1st day of month (month case):

  "trunc" should "truncate date to the first day of the month" in {
    val dataset = Seq(
      ("2019-09-20T00:30"),
      ("2011-10-20T07:50"),
      ("2020-02-29")
    ).toDF("datetime_col")

    val result = dataset.select(functions.trunc($"datetime_col", "month").as("truncated_date").cast("string"))
      .map(row => row.getAs[String]("truncated_date")).collect()

    result should have size 3
    result should contain allOf("2019-09-01", "2011-10-01", "2020-02-01")
  }

unix_timestamp

The opposite for from_unixtime is unix_timestamp(s: Column). It converts the datetime of input column into a Unix timestamp seconds:

  "unix_timestamp" should "return Unix timestamp for every row" in {
    // version without the parameter returns the current time
    val dataset = Seq(
      ("2018-11-10 20:30:30"),
      ("2019-09-20T00:30")
    ).toDF("datetime_col")

    val result = dataset.select(functions.unix_timestamp($"datetime_col")
      .as("timestamp")).collect().mkString(", ")

    result shouldEqual "[1541878230], [null]" // null because the input date was malformated
  }

weekofyear

If you want to know the week's number for a particular date, you can use weekofyear(e: Column) function:

  "weekofyear" should "return week of year" in {
    val dataset = Seq(
      ("2019-09-20T00:30"),
      ("2011-10-20T07:50"),
      ("2020-02-29")
    ).toDF("datetime_col")

    val result = dataset.select(functions.weekofyear($"datetime_col").as("date_weekofyear"))
      .map(row => row.getAs[Integer]("date_weekofyear")).collect()

    result should have size 3
    result should contain allOf(38, 42, 9)
  }

window

If you want to put your datetime into a time-based window, you can use window(timeColumn: Column, windowDuration: String) for that. It can be useful to, for instance, group different time-based events and apply an aggregation to them:

  "window" should "build 3 1-minute windows" in {
    val dataset = Seq(
      ("2019-09-20T00:30"),
      ("2011-10-20T07:50"),
      ("2011-10-20T07:50"),
      ("2020-02-29")
    ).toDF("datetime_col")

    val result = dataset.select(functions.window($"datetime_col", "1 minute").as("1_min_window").cast("string"))
      .map(row => row.getAs[String]("1_min_window")).collect()

    result should have size 4
    result should contain allElementsOf (Seq(
      "[2019-09-20 00:30:00, 2019-09-20 00:31:00]",
      "[2011-10-20 07:50:00, 2011-10-20 07:51:00]",
      "[2011-10-20 07:50:00, 2011-10-20 07:51:00]", // As you can see, it includes duplicates
      "[2020-02-29 00:00:00, 2020-02-29 00:01:00]"
    ))
  }

year

year(e: Column) extracts the year from the specified date and returns it as an integer:

  "year" should "extract the year from the input dates" in {
    val dataset = Seq(("2019-09-20"), ("2013-01-20")).toDF("datetime_col")

    val result = dataset.select(functions.year($"datetime_col").as("date_year"))
      .map(row => row.getAs[Integer]("date_year")).collect()

    result should have size 2
    result should contain allOf(2019, 2013)
  }

There are a lot of functions to manipulate date and time in Apache Spark SQL. You probably won't learn all of them by heart but it's important to keep 2 common points though. The first is that they always take the 0 as the default. For instance, if you try to use a date in a datetime function, the date will be defined at midnight. Another thing is that the functions will return null if the input column cannot be converted to the expected type (date or timestamp). And for everything else, you can check this post or @group datetime_funcs-annotated methods in Spark's functions object.


If you liked it, you should read:

đź“š Newsletter Get new posts, recommended reading and other exclusive information every week. SPAM free - no 3rd party ads, only the information about waitingforcode!