Data engineering articles

Looking for something else? Check the categories of Data engineering:

Apache Airflow Big Data algorithms Big Data problems - solutions Data engineering patterns General Big Data Graphs SQL

If not, below you can find all articles belonging to Data engineering.

Secondary index in NoSQL data stores

The data organization in key-value oriented NoSQL databases is very often based on a pair of keys: partition and sorting. However they also offer other feature called secondary index that can be a good alternative to previously described index table pattern.

Continue Reading →

Index table pattern in NoSQL

Good write throughput and horizontal scalability are maybe the most visible advantages of NoSQL storage systems. However very often people with a solid RDBMS background fall in the trap of index that can't be so easily created. Fortunately, a lot of patterns helping to deal with this problem exist. One of them is the index table pattern.

Continue Reading →

Introduction to data quality

Dealing with a lot of data is a time consuming activity but dealing with a lot of data and ensuring its high value is even more complicated. It's one of the reasons why the data quality should never be neglected. After all, it's one of components providing accurate business insights and facilitating strategic decisions.

Continue Reading →

Polyglot persistence - definition and examples

The popularization of NoSQL data stores brought a new concept in data management called polyglot persistence. This term is very similar to polyglot programming and it'll be presented below.

Continue Reading →

Log-structured file system

Sequential writes made their proofs in distributed data-driven systems. Usually they perform better than random writes, especially in systems with intensive writes. Beside the link to the Big Data, the sequential writes are also related to another type of systems called log-structured file systems that were defined late 1980's.

Continue Reading →

HyperLogLog explained

Counting the number of distinct elements can appear a simple task in classical web service-based applications. After all, we usually have to deal with a small subset of data that simply fits in memory and can be automatically counted with the data structures as sets. But the same task is less obvious in Big Data applications where the approximation algorithms can come to the aid.

Continue Reading →

Dynamo paper and consistent hashing

One of previous posts presented partitioning strategies. Among described techniques we could find hashing partitioning based on the number of servers. The drawback of this method was the lack of flexibility. With the add of new server we have to remap all data. Fortunately an alternative to this "primitive" hashing exists and it's called consistent hashing.

Continue Reading →

Data partitioning strategies

Every data processing pipeline can have a source of contention. One of them can be the data localization. When all entries are read from single place by dozens or hundreds of workers, the data source can respond slower. One of solutions to this problem can be the partitioning.

Continue Reading →

Enforcing consistency in stateful serverless processing with idempotence

Since the gain of popularity of cloud operators, serverless processing became one of serious alternatives to the cluster-based data pipelines. It's often cheaper to have event-based applications than different processings in the clusters. However, using serverless (and not only) in distributed and stateful computing can sometimes be difficult. But often one property can help in a lot of problems - idempotence.

Continue Reading →

Zeta architecture

Almost every year new concept of data-centric architecture appears. In 2014 Kappa conception was published by Jay Kreps. One year after another concept emerged - the architecture called Zeta.

Continue Reading →

Big Data tools

Previously we discovered two popular architectures in Big Data systems - lambda and kappa. Because it was new and pretty long concepts to explain, we expressly ignored tools.

Continue Reading →

Big Data architectures

When some years ago I done a small POC Hadoop/MapReduce project based on a million song dataset (my old blog in French), I expressly omitted the part about architecture. It was a mistake because correctly designed architecture is as important as code written behind.

Continue Reading →

Big Data glossary

Originally, Big Data can seem to be strictly related to one tool - Hadoop. However, it's a misunderstanding of the concept because it hides more interesting stuff.

Continue Reading →