Data processing articles

Looking for something else? Check the categories of Data processing:

Apache Beam Apache Flink Apache Spark Apache Spark GraphFrames Apache Spark GraphX Apache Spark SQL Apache Spark Streaming Apache Spark Structured Streaming PySpark

If not, below you can find all articles belonging to Data processing.

Local deduplication or dropDuplicates?

One of the points I wanted to cover during my talk but for which I haven't enough time, was the dilemma about using a local deduplication or Apache Spark's dropDuplicates method to not integrate duplicated logs. That will be the topic of this post.

Continue Reading β†’

Sessionization pipeline - from Kafka to Kinesis version

I'm slowly going closer to the end of Spark+AI Summit follow-up posts series. But before I terminated, I owe you an explanation for how to run the pipeline from my Github on Kinesis.

Continue Reading β†’

Kafka timestamp as the watermark

In the first version of my demo application I used Kafka's timestamp field as the watermark. At that moment I was exploring the internals of arbitrary stateful processing so it wasn't a big deal. But just in case if you're wondering what I didn't keep that for the official demo version, I wrote this article.

Continue Reading β†’

Reprocessing stateful data pipelines in Structured Streaming

During my talk, I insisted a lot on the reprocessing part. Maybe because it's the less pleasant part to work with. After all, we all want to test new pipelines rather than reprocess the data because of some regressions in the code or any other errors. Despite that, it's important to know how Structured Streaming integrates with this data engineering task.

Continue Reading β†’

Output modes in Structured Streaming

The series of notes I took during my Apache Spark Summit preparation continues. Today it's time to cover output modes that I also used in the presented solution for sessionization problem.

Continue Reading β†’

State lifecycle management in Structured Streaming

In this post about state store in Structured Streaming I will focus on the state lifecycle management. The goal is to see what happens when the state expires, why removing it from the state store is so important and some other interesting questions!

Continue Reading β†’

DataFrame or Dataset to solve sessionization problem?

When I was preparing the demo code for my talk about sessionization at Spark AI Summit 2019 in Amsterdam, I wrote my first version of code with DataFrame abstraction. I hadn't type safety but the data manipulation was quite clear thanks to the mapping. Later, I tried to rewrite the code with Dataset and I got type safety but sacrificed a little bit of clarity. Let me deep delve into that in this post.

Continue Reading β†’

Delta and snapshot state store formats

State store uses checkpoint location to persist state which is locally cached in memory for faster access during the processing. The checkpoint location is used at the recovery stage. An important thing to know here is that there are 2 file formats with checkpointed state, delta and snapshot files.

Continue Reading β†’

Watermark in Structured Streaming

I was already taking about watermark on my blog but this time I will focus more on its use in the context of a stateful processing.

Continue Reading β†’

State store 101

After checkpointing, it's time to start a new chapter of Spark Summit AI 2019 preparation posts. And in this new chapter I will describe the state store. It's the first of 3 articles about this important part of the stateful processing.

Continue Reading β†’

Checkpoint storage in Structured Streaming

At the moment of writing this post I'm preparing the content for my first Spark Summit talk about solving sessionization problem in batch or streaming. Since I'm almost sure that I will be unable to say everything I prepared, I decided to take notes and transform them into blog posts. You're currently reading the first post from this series (#Spark Summit 2019 talk notes).

Continue Reading β†’

FileAlreadyExistsException at task retry on EMR

The exceptions are our daily pain but the exceptions hard to explain are more than that. I faced one of them one day when I was integrating Apache Spark SQL on EMR.

Continue Reading β†’

Date functions in Apache Spark SQL

This new post about Apache Spark SQL will give some hands-on use cases of date functions.

Continue Reading β†’

Aggregations execution in Apache Spark SQL

I wanted to write this post after the one about aggregation modes but I didn't. Before explaining different aggregation strategies, I prefer to clarify aggregation internals. It should help you to better understand the next part.

Continue Reading β†’

The why of code generation in Apache Spark SQL

By the end of 2018 I published a post about code generation in Apache Spark SQL where I answered the questions about who, when, how and what. But I omitted the "why" and cozos created an issue on my Github to complete the article. Something I will try to do here.

Continue Reading β†’

Less popular aggregation functions in Apache Spark SQL

There are 2 popular ways to come to the data engineering field. Either you were a software engineer and you were fascinated by the data domain and its problems (I did). Or simply you evolved from a BI Developer. The big advantage of the latter path is that these people spent a lot of time on writing SQL queries and their knowledge of its functions is much better than for the people from the first category. This post is written by a data-from-software engineer who discovered that aggregation is not only about simple arithmetic values but also about distributions and collections.

Continue Reading β†’

Buckets in Apache Spark SQL

Partitioning is the most popular method to divide a dataset into smaller parts. It's important to know that it can be completed with another technique called bucketing.

Continue Reading β†’

Vectorized operations in Apache Spark SQL

When I was preparing my talk about Apache Spark customization, I wanted to talk about User Defined Types. After some digging, I saw that there are some UDT in the source code and one of them was VectorUDT. And it led me to the topic of this post which is the vectorization.

Continue Reading β†’

Writing custom external catalog listeners in Apache Spark SQL

When I was writing posts about Apache Spark SQL customization through extensions, I found a method to define custom catalog listeners. Since it was my first contact with this, before playing with it, I decided to discover the feature.

Continue Reading β†’

Writing custom optimization in Apache Spark SQL - custom parser

Last time I presented ANTLR and how Apache Spark SQL uses it to convert textual SQL expressions into internal classes. In this post I will write a custom parser.

Continue Reading β†’